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EXECUTIVE SUMMARY

BACKGROUND

Software development estimating methods, such as the COnstructive COst
MOdel (COCOMO) [1], provide a point estimate of the required effort in
staff months. These estimating methods assume accurate a priori informa-
tion for:

a. the size of the project in thousands of lines of code, and

b. the complexity of the project, the team's skill and familiarity
with the language, the available equipment and tools, etc. These
attributes are rated, and the estimated effort is adjusted accord-
ingly by these Development Effort Multipliers (DEMs).

In a planning phase, there is significant uncertainty in these param-
eters. Consequently, a more appropriate and useful estimate is a proba-
bility cumulative distribution function (CDF) of effort.

PURPOSE

The purpose of this study is to compute the effort CDF and point esti-
mate, given assumed probability density functions (pdfs) for the project's
size and DEMs. In a planning phase, these estimates are frequently based
on analogies to similar functions from other programs. Although there is
considerable variability in the historical data, it is possible to specify
realistic ranges for size and DEMs. Combining size and DEM uncertainty
into a total system effort model is a difficult analytical problem and
cannot be solved exactly, since the effort-estimating model is a nonlinear
function of size, while the DEMs are multiplicative factors evaluated for
the individual subsystems.

RESULTS

A procedure has been developed for estimating the system-level effort
point estimate and CDF in terms of the means and variances of size and of
the DEMs of the subsystems. Further, it is shown that the CDF of effort is
determined to an accuracy which is adequate for software effort estimation
whenever the largest contributing variance is not more than half the total
variance of effort. The procedure is based on multivariable Taylor series
and on ,he properties of the Central Limit Theorem.
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CONCLUSIONS

The proposed solution is straightforward to implement, though there
are several computational steps; a spreadsheet adequately supports the
calculations. The method is recommended for use in planning estimates of
software systems consisting of multiple functional areas, each with
variability in the estimating parameters.

iv



ACKNOWLEDGMENTS

This document has been prepared by The MITRE Corporation under
Project No. 027A, Contract No. F19628-86-C-0001. The coliLract is

sponsored by the Electronic Systems Division, Air Force Systems
Command, United States Air Force, Hanscom Air Force Base,
Massachusetts 01731-5000.

It is a pleasure to acknowledge the contributions of colleagues
in D-93: Karen Pullen, Systems Analysis & Cost, Associate Department
Head, who offered active support and encouragement, Michael Alexander
and Paul Garvey whose conversations and suggestions were valuable, and
Mrs. Dorothy Bertrand whose secretarial skill and patience are

appreciated.

I ,D r. r r+Lc~iLi

By

L: !) J "

AdaJb~iy COrdcs

D st 
or

At-1

ATv_



TABLE OF CONTENTS

SECTION PAGE

1 Introduction .......... .............................. 1

1.1 Background ........ ........................ .I... 1
1.2 Scope 1
1.3 Approach ............ ......................... 2
1.4 Discussion 2
1.5 Outline of Report .......... ..................... 2

2 The Central Limit Theorem and COCOMO ....... .............. 3

2.1 Mathematical Foundations ........ ................. 3
2.2 Approach 4

2.2.1 Notation ........... ...................... 4
2.2.2 General Relationships 5
2.2.3 Taylor Series ......... ................... 7
2.2.4 Derivatives 9
2.2.5 Cumulative Distribution Function of Effort . . 10

3 Probability Density Functions for Parameter Uncertainties . . . 11

3.1 Uniform Distribution ....... ................... .... 11
3.2 Triangular Distribution 12
3.3 Discrete Distribution ....... ................... ... 13

4 Acruracy and Validity .......... ..................... 15

4.1 Accuracy of Means and Variances .... .............. ... 15
4.2 Conditions for Calculating the CDF 17

4.2.1 A Sum from Two Uniform pdfs ... ............ ... 18
4.2.2 A Sum from Two Right-Triangular pdfs 19

4.3 Inferences ........................... 23
4.4 Suggestions for the Software Analyst 24

5 Example ............ ............................ ... 25

5.1 Data .......... ........................... ... 25
5.2 Reorganization of Mean and Variance Formulations 26
5.3 Mean and Standard Deviation of DEMs .... ............ ... 28
5.4 Mean and Standard Deviation of Effort 28
5.5 Cumulative Distribution Function of Effort . ........ . 28

vii



TABLE OF CONTENTS (Concluded)

SECTION PAGE

List of References............................39

Appendix A................................41

viii



LIST OF ILLUSTRATIONS

FIGURE PAGE

3-1 Triangular pdf and Notation ....... .................. ... 12

4-1 A Right-Triangular Probability Density FunLtion . ........ . 19

5-1 Instructions for Calculating Mean and Standard
Deviation of DEMs ........... ....................... 29

5-2 Calculation of Mean and Standard Deviation of
DEMs in CSCI 1 ........... ..................... ... 30

5-3 Calculation of Mean and Standard Deviation of
DEMs in CSCI 2 ......... ........................ ... 31

5-4 Calculation of Mean and Standard Deviation of
DEMs in CSCI 3 ......... ........................ ... 32

5-5 Instructions for Computation of Mean and
Standard Deviation of Effort ...... .................. ... 33

5-6 Calculation of Mean and Standard Deviation of Effort ....... .. 35

5-7 Cumulative Distribution Function of Effort ... ........... ... 37

A-i Instructions for Calculating Mean and Standard
neviation of DEMs ........... ...................... 42

A-2 Form for Computation of Mean and Standard
Deviation of DEMs ........... ...................... 43

A-3 Instructions for Computation of Mean and
Standard Deviation of Effort ..... ................. ... 44

A-4 Form for Computation of Mean and Standard
Deviation of Effort ........ ..................... .. 46

A-5 Normal Cumulative Probability Paper .... .............. ... 47

ix



LIST OF TAB ES

TABLE PAGE

2-1 COCOMO Parameters ............ ....................... 6

4-1 Mean and Standard Deviation of Effort for Several
Uniform pdfs of Size ........ ...................... . 16

4-2 Mean and Standard Deviation of Effort for Triangular
pdfs of Size .......... .......................... .. 16

4-3 Normal CDF, True CDF, and 0ifference for a Symmetrical
Triangular pdf, 16K to 64K Size ..... ................ . 19

4-4 Exact and Normal Cumulative Probability Distributions of Effort
for the Sum ol Variates from Two Right-Triangular pdfs ..... . 22

4-5 Errors of Estimated Effort ...... ................... ... 23

5-1 Assumed Size Uncertainties ...... ................... ... 25

5-2 Assumed Uncertainties of DEMs ..... ................. . 26

5-3 Cumulative Probability vs. Effort .... ............... . 36

x



SECTION 1

INTRODUCTION

1.1 BACKGROUND

Software development cost estimation is subject to a variety of uncer-
tainties of which some are common to all systems, while others are unique
to software. The requirements for any type of system may change in nature,
scope, or functionality, or may vanish. Further, especially at the start
of a software development process, there is considerable uncertainty as to
the final investment of funds, effort, and schedule. One of the principal
sources of this initial uncertainty is the estimated size of the software
to be developed; the final size of a software syst;.. is sometimes more than
twice the original estimate. Another major source of uncertainty lies in
the estimating model of softvare development cost, for no highly accurate
model exists at present. And it is common to find that the complexity, or
other similar descriptors of a project's character, cannot be accurately
predetermined. In spite of these important uncertainties, the project
manager needs to know what budget has a desired probability of success, or
what the probability of uccess is for a given budget. These are provided
by the effort Cumulative Distribution Function (CDF).

A popular method for estimating software development cost is the
COnstructive COst MOdel, COCOMO [1]. However, this is in principle only a
method for forming point estimates for effort, staffing, and schedule, and
has no inherent capability for estimating the effects of uncertainty of the
size of the project and its various components, known as computer software
configuration items (CSCIs). Further, this model requires selection of
development effort multipliers (DEMs) to represent the impact of particular
aspects of the project or environment, such as the complexity of the proj-
ect, or the computation facility in which the development is conducted.
Initially, these attributes also are inevitably uncertain due to incomplete
knowledge of the product, the process, the facility, and the experience and
ability of the staff. And, finally, COCOMO has a nontrivial error with
respect to its own database. In consequence, thele can be a significant
range in the estimated cost of the system.

1.2 SCOPE

This report presents a method for extending COCOMO to incorporate the
uncertainties of the size, the rating values selected for the DEMs, and the
error of the model in determining the probability distribution of effort
for a multiple CSCI project.
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The reader is asssumed to be familiar with calculus and probability
theory. It is not within the scope of this paper to comment on ESD
acquisition and software cost estimation practices. The use of COCOMO is
primarily intended to illustrate application of the method which is
applicable to any software model of the aIb form.

1.3 APPROACH

The analytical approach is outlined: a) the software development
effort is expressed as a multivariable Taylor series in terms of the sizes
and the DEMs of the CSCIs; b) the assumption that the uncertainties of
these variables are statistically independent is used to approximate the
mean effort and its standard deviation; c) the Central Limit Theorem (CLT)
is then used to assert that the effort probability density function (pdf)
and CDF are approximately normal.

1.4 DISCUSSION

The software cost analyst, when undertaking an uncertainty analysis,
typically assigns a range of uncertainty to the estimated size of each
major component. It is, however, very difficult for the analyst to state
with any confidence whether the pdf is uniform, triangular, discrete, beta,
or some other form. A similar observation applies to the DEMs. It is the
particular virtue of the CLT that it shows the forms of the pdfs of the
contributing elements to be unimportant: the forms of the pdf and CDF for
the effort of the entire project converge to the familiar normal, or
Gaussian, pdf and CDF as the number of CSCIs and DEMs increases. It is
therefore legitimate for the analyst to assume very simple forms for the
pdfs of size or DEMs. The CLT is thus especially appropriate and useful
for software development effort uncertainty analysis.

1.5 OUTLINE OF REPORT

Section 2 presents the general approach to software development effort
uncertainty analysis. Subsections 2.1 and 2.2 set forth, respectively, the
foundations and the theoretical development of this approach. Various
probability density functions considered suited to software DEMs and
size estimation will be examined; their properties will be developed in
section 3. The validity of the CLT in this application is considered in
section 4. The analyst who is principally interested in the application
and use of this technique, rather than its development, may go ditectly to
section 5, where an example is fully developed. The various worksheet
formats used in section 5 are gathered in the appendix.
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SECTION 2

THE CENTRAL LIMIT THEOREM AND COCOMO

2.1 MATHEMATICAL FOUNDATIONS

In this section, analytical relationships will be developed from which
the effort mean and standard deviation will be defined in terms of the
means and standard deviations of size of the CSCIs and of the values of the
DEMs. By invoking the CLT, the CDF for effort can be formed, which enables
calculation of the probability that a specified value cf effort will be
exceeded, and the confidence level of the estimate can be determined. The
approach is developed for Intermediate COCOMO. It can be extended to
Detailed COCOMO, and to any model of the form aIb .

To use the COCOMO software development cost estimating model requires
the analyst to know the estimated size of each CSCI. In addition, the
analyst requires the appropriate value to use for each of the 15 or more
DEMs. These cost-driver attributes are not easily evaluated: for example,
ACAP (analyst capability) is very low if "... the average analyst lies at
the 15th percentile in terms of ability, efficiency, ability to communicate
and cooperate." This is a highly subjective criterion. The other DEMs
have similar definitions, with similar subjective evaluations. To specify
a priori the true value for each of the DEMs is not possible. Thus, size
and DEM rating levels are best defined by probability density functions.

The problem to be examined in this report is now stated: using the
COCOMO equations, define the mean, the standard deviation, the pdf, and the
CDF of effort for a multi-CSCI project in terms of the uncertainties of the
CSCIs' sizes and DEMs, and the error of the effort estimating model.

The theoretical foundations of this approach are:

a. Law of Means: the mean of a sum of random variables taken from
arbitrary distributions equals the sum of the means of the
variables;

b. Law of Variances: the variance of a sum of independent random
variables taken from arbitrary distributions equals the sum of the
variances of the variables;

c. Taylor Series: a function which together with its derivatives is
continuous in an interval may be exactly described everywhere
within that interval in terms of the values of the variables, the

function, and its derivatives, which are evaluated at any point
within the interval;
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d. CLT: the pdf and CDF of a sum of independent random variables
converge to the normal as the variances of the contributors become
small compared to the variance of the sum; the forms of the pdf
and CDF of the sum do not depend on the forms of the pdf and CDF
of the contributors.

The independent variables, assumed in this section, are:

a. The size of the software for each CSCI, measured in thousands of
delivered source instructions (KDSI);

b. The rating levels of the DEMs chosen for each CSCI;

The dependent variable is development effort, measured in staff
months (SM).

2.2 APPROACH

The approach is outlined:

a. An expression will be formed which defines effort in terms of the
DEMs and the size in KDSI of the CSCIs;

b. Truncated Taylor series will be formed to define effort in terms
of the independent variables;

c. The derivatives of the expressions in (a) will be formed and
substituted into the Taylor series;

d. The mean and variance of effort will then be calculated under the
assumption that the independent variables (size and DEMs) are
random and statistically independent;

e. Finally, by invoking the CLT, it will be shown that the pdf and
CDF of effort are normal under certain conditions, and this fact
will be used to specify the probability that the effort estimate
will not be exceeded.

The procedure outlined above is now set forth in detail.

2.2.1 Notation

D Development effort in project, SM

Di  Development effort in CSCI i, SM

4



N Nominal SM of effort in project

N. Nominal SM of effort in CSCI i1

I Number of KDSI in project

I. Number of KDSI in CSCI i1

cI. Standard deviation of I.1 1

Mik Value of DEM k in CSCI i

m ik Standard deviation of Mik

Mi  Effort adjustment factor, (product of all DEMs), in CSCI i

The independent random variables are I. and M .; all other variables
are dependent. The range of the index, i, is over all CSCIs, while the
range of the index, k, is over all DEMs.

2.2.2 General Relationships

The effort is now defined in terms of the sizes of the CSCIs and the
values of the DEMs, under the assumption that the uncertainties of the
system's DEMs and size are defined at the level of the CSCIs rather than at
lower levels. This assumption in no way limits the generality of the
findings, but merely reduces the complexity of the notation and the
derivations.

Following the COCOMO equations, the key relationships are:

Total size of project

I = 1 I (2-1)
i 1

Computation of nominal SM

N = alb (2-2)

where the parameters, a and b, are presented in table 2-1, see page 117 of

111.
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Table 2-1. COCOMO Parameters

Development Mode a b

Organic 3.2 1.05
Semi-detached 3.0 1.12
Embedded 2.8 1.20

Computation of Effort Adjustment Factor for CSCI i, see page 125 of [I1:

M. = H M (2-3)

Distribution of nominal SM among CSCIs

Ni = I.N/I (2-4)

The nominal effort is allocated to the several CSCIs in proportion to
their sizes, as per instructions 4-6 on page 148 of Il]. The method used
above in (2-4) for computing the distribution of nominal SM avoids the
quantity nominal productivity used in [1], by substituting its definition.

Computation of development effort in CSCI i

D. = N.M (2-5)

Computation of project total effort:

D = E D (2-6)

Equations (2-1) through (2-6) completely define the foundations of
Intermediate COCOMO to the extent required for the uncertainty analysis.
As stated, effort as defined by D in (2-6) is the dependent variable, while
the sizes of the CSCIs (I,) in (2-1) and the DEMs' values given as M,, in
(2-3) are the independent variables. These independent variables are
random and statistically independent.
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2.2.3 Taylor Series

A Taylor series is formed for effort as a function of size, and of the
DEMs, and is truncated after the second derivative terms. The error due to
this truncation is demonstrated in section 4. The general form for this
truncated multivariable Taylor series is

z = z o + - (x-xo) + (1/2!) E - (x,-xo)(x--xjo) (2-7)

ax. 1 a 3x. x.

where z is the dependent variable, xi and x. are the independent variables
and thus may be either size or DEMs, and the subscript 0 implies the
multidimensional point about which the series is expanded. The indices
range over all variables. In this case, the series is to be expanded about
the mean values of the independent variables (Ii and Mik), and takes the
form

3D 3D
D =D + E - (Ii- I.) + - (Mik-Mik)

0 i i  i k aMik

a2D
+ (1/2!) (Ii-Ii)(Ij- Ij)+ (1/2!) Ig

(2-8)

32D

+ (1/2!) E - (li-Ii)(M k-Mjk)
k aiiamjk

a2D

+ (1/2!) E k (MIk-Mik)(Mjk-Mjk) + .
kmik amjk

D is the usual point estimate of the development effort based on mean
sizes and mean values of the DEMs, in accordance with (2-1) - (2-6). The
partial derivatives are to be evaluated at the mean values of size and
DEMs. The overbar implies the mean values for the sizes, Ii or I., and for
the DEMs, M ik or Mjk.1

We now may formulate expressions for the mean value of D and its
variance, and evaluate (2-8) under the following assumptions:

a. The uncertainty of size of any CSCI is independent of the
uncertainty of size of the other CSCIs;

b. The uncertainty of size of any CSCI is independent of the
uncertainties of the DEMs for all CSCIs;
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c. The uncertainty of the value of any DEM is independent of the
uncertainties of all other DEMS so that all the random variables
are mutually statistically independent.

The mean value of (2-8) is determined. The three terms in (2-7)
expand into the six terms of (2-8) due to the presence of variables of two
types (Ii and Mik ); it will be shown that the assumptions noted above cause
four terms to vanish, and the procedure for evaluating the other two will
be demonstrated. Consider the first term on the right of (2-8); as stated
above, this is the development effort point estimate determined by (2-1)
through (2-6) evaluated with the mean values of size and DEMs.

Now consider the second and third terms, which appear on the first
line of (2-8) and are the first derivative terms. The expected value of
(Ii-TI) is zero since the expected value of I is 1,; the expansion is
about the mean of the variables, t , therefore the second term vanishes.
By the same reasoning, the expecte value of (Mik-Rik) is zero, and that
term vanishes also.

The fourth term on the right of (2-8), in the second line, is reduced
by the expectation operator and assumption (1), above, to the mean value of

a2D a2D
(1/2) -- (li- I)2, which is (1/2) - 2I

l I

since the expected value of the product is zero unless i=j.

Assumption (2) causes the fifth term, on the third line of (2-8), to
vanish in the presence of the expectation operator.

The sixth term on the right of (2-8) is evaluated by using assumption
(3) and the discussion for the fourth term, and yields

2

(1/2) r _ a2 M
i k 2 i

which vanishes as the second and higher partial derivatives of effort with
respect to MR are identically zero. Third and higher partial derivatives
of effort wit respect to I. are neglected; the consequent errors will be
discussed in section 4.

Combining the results developed above yields the estimate of the mean
effort

a2D

Do  + (1/2) --I 2 1 (2-9)
1
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The second term of (2-9) is relatively small. Its value will be demon-
strated in the example shown in section 4.2.2; see also column 10 of
figure 5-6.

The variance of effort is now determined. The assumptions of mutual
independence of the random variables will be used in conjunction with the
properties of the expectation operator. Subtract (2-9) from (2-8); this
yields an expression for the uncertainty of effort about the mean. Then
square and take the expectation; these steps yield the variance of effort
as

2D 2 ( D _,2 2

a D = - I. + E E - (2-10)i 1 1J i k aMik

In principle, the variance must also depend on all the odd higher
derivatives with respect to I. and Mik. But these are identically zero for
Mik, while the derivatives wilth respect to I. are very small. The examples
in section 4 will show the error of this approach for simple cases.

2.2.4 Derivatives

The following partial derivatives are required:

aD aD a2 D
- I - , and -

1I Nik 8i

Consider first the partial derivative with respect to the size of
CSCI i. Relationships (2-1) - (2-4) enable formation of this partial
derivative, which is a size-sensitivity coefficient, as

aD
- [ (b-l)D0 + NMi I/ 1 (2-11)

In forming this derivative it is essential to remember that Ii is included
in I, the total size of the project, as shown in (2-1).

Partial differentiation of (2-11) with respect to I,, and use of (2-1)
through (2-6) and (2-11), yields the required second derivative of effort
with respect to size

32D --

2 = (b-1)[(b-2)Do + 2NM i/I
2  (2-12)
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Similarly, the derivative of effort with respect to a DEM is

3D

=- - . n M., = D /Mik (2-13)

As stated after (2-7), the partial derivatives must be evaluated with mean
sizes and mean values of the DEMs.

Substitution of (2-12) into (2-9), and of (2-11) and (2-13) into
(2-10), yields the estimated mean development effort as

D D + (1/2) E {(b-l)*[(b-2)D0 + 2NMi/1 2)a 2 i (2-14)
0 ~10

and the variance of development effort as
a2DD = Z ([(b-l)D + N*Mi]/I} 2 

aI + Z Z (D/1M )2 a2 Mi (2-15)
i 0 b i k i i k 1k

The mean effort and the variance of effort have thus been defined in
terms of quantities which are, or can be made to be, readily available in a
computational format for Intermediate COCOMO.

2.2.5 Cumulative Distribution Function of Effort

The procedures described above enable formation of the variance and
mean value of the estimated SM of effort in terms of the means and vari-
ances of size of the CSCIs and of the DEMs. In addition to the uncertain-
ties of the size and DEMS, the error of the COCOMO model may be included in
the determination of the variance of the estimate. The CLT justifies
disregarding whether the model's errors are exactly normally distributed.
The errors of the COCOMO model are independent of the errors due to uncer-
tainties of size or of DEMs, and therefore the variance of the model's
estimate of effort may be added to those due to size and DEMS to present an
overall assessment of the variance of effort. The CLT is now used to
assert that, as the number of independent random variables increases, the
pdf and CDF of their sum converge to the normal pdf and CDF, which are
fully determined by the mean and variance of effort. Any packaged program
or standard table of the normal probability integral may be used to
calculate the CDF; see also the appendix.
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SECTION 3

PROBABILITY DENSITY FUNCTIONS FOR PARAMETER UNCERTAINTIES

It was assumed in section 2 that the mean and standard deviation for
pdfs appropriate for software risk analysis are available. In the present
section, these properties will be derived for uniform, triangular, and dis-
crete pdfs. Discrete pdfs are especially appropriat, for characterizing the
uncertainties of DEMs. It is considered that more sophisticated pdfs such
as beta are inappropriate for software analysis as they require the analyst
to have great insight into the nature of the uncertainties of size or of
the DEMs. In reality, it is difficult to select reasonable upper and lower
bounds for a uniform distribution, which has only two parameters! Moreover,
the effect of the CLT elimin-tes the significance of fine distinctions in
the forms of assumed pdfs. The validity of the very simple geometric forms
for analysis using the CLT will be demonstrated in section 5.

The use of Taylor series in section 2 requires that the independent
variables be continuous. This is not strictly true for size, since the
size of a piece of code is defined in lines of code, which is an integer
quantity; it is hard to conceive of a fraction of a line of code. Nonethe-
less, as the minimum increment of one line is 0.001 KDSI, it is reasonable
to assume that effort is a continuous function of the continuous variable
of size. The DEMs are fundamentally continuous variables; however, they are
known only at the specific tabulated points and therefore a discrete pdf
structure is useful.

3.1 UNIFORM DISTRIBUTION

A uniform probability density function has the definition

S0, x < L

f(x) = 1/(H-L), L < x < H (3-1)
0, H Z x

where L Minimum value of x
H Maximum value of x
x Statistical variable

The mean of this pdf is easily found from the geometry to be

X = (H-L)/2 + L = (H+L)/2 (3-2)
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The variance is
H

a 2= fx2f(x)dx _ ( )2 = (H-L)2 /12 (3-3)L

3.2 TRIANGULAR DISTRIBUTION

The mean and variance of a general triangular pdf are derived. Figure
3-1 shows a triangular pdf and its notation.

f

f = [2/(H-L)J[(x-L)/(M-L)J

(3-4)
\\~f. [2/(H-L)]I(H-x)/(H-M)J

II
0 L M H x

Figure 3-1. Triangular pdf and Notation

Notation

f Probability density
L Minimum value of x
M Most probable value of x, mode
H Maximum value of x
x Statistical variable, thousands of lines of code

The mean is derived according to the rule,

C M H
x = Jx f(x) dx = fx f_(x) dx + fx f+(x) dx = (L+M+H)/3 (3-5)

-O L M

where x is the mean.
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The variance is calculated according to the rule

2 M H
2= f(x-x) 2 f(x) dx = j(x-x) 2 f_(x) dx + f(x-x) 2 f+(x) dx

- L M

= {[(L 2 +M2 +H2 )-(LM+LH+MH)]/18} (3-6)

A right-triangle pdf is sometimes used in software size analysis. The
mean and variance for this special form are, if L=M is assumed,

x = (2L+H)/3 (3-7)

and

2= (H-L)2 /18 (3-8)

3.3 DISCRETE DISTRIBUTION

A discrete distribution is occasionally realistic for size and is
usually ideal for DEMs, as they are given only for specific values in 11].
For example: the probability of DEM rating 1 is P1, of rating 2 is P2 9 of
rating 3 is P3, etc., where the sum of the Pk must equal unity. Then,
defining

xk The rating values tabulated in [1] for a DEM
Pk The probability of those rating values for that DEM

the mean value of the DEM is

x =ExP (3-9)

and the variance of the DEM iq

2 (xk-x) 2 Pk (3-10)
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SECTION 4

ACCURACY AND VALIDITY

This section is devoted to resolving two important questions:

a. Are the means and variances of effort determined with accuracy
sufficient to be confidently used?

b. Under what conditions is the CDF derived by this procedure
sufficiently accurate?

These questions are now considered in the order set forth above.

4.1 ACCURACY OF MEANS AND VARIANCES

The accuracy with which the Taylor series method determines the mean
and variance of a multi-CSCI software system is considered. The approach
is outlined. There exists a method, elegantly presented in [4] for uniform
and triangular pdfs of size, which enables exact calculation of the mean
and variance of effort for a single CSCI. The mean and variance of a
single CSCI determined by the Taylor series method will therefore be
compared to the exact values. The following rules will thpn be used to
infer that the results may be extended to the multi-CSCI case:

a. The mean of a sum of random variables equals the sum of the means

of those variables;

b. The variance of a sum of independent random variables equals the

sum of the variances of the variables.

These rules are valid in general.

The mean and standard deviation of several uniform pdfs are calculated

by the Taylor series and eAact methods and are compared in table 4-1,
where the COCOMO Embedded Mode values a=2.8 and b=1.2 have been used; this

choice of the parameter, b, exhibits the maximum error for the Taylor
series method presented in this report. The errors of the mean and
standard deviation are due to the truncation of the Taylor series.
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Table 4-1. Mean and Standard Deviation of Effort
for Several Uniform pdfs of Size

Size-Range Mean Effort Effort Standard Deviation
Low/High Taylor Exact Taylor Exact
KDSI Series Method Series Method

4/16 45.02 45.03 18.4 18.3
16/64 237.6 237.7 97.4 96.8
64/256 1254 1255 514 511

256/1024 6619 6622 2712 2697

The largest error in the values of the means is less than one part per
thousand, while the largest error in the standard deviations is less than
six parts per thousand. These errors are considered entirely satisfactory,
as they are several orders of magnitude smaller than the errors of the
COCOMO model. These errors are due to the truncation of the Taylor series.

Similar results, shown in table 4-2, are found for a group of various
triangular pdfs of size. The mean and standard deviation of effort for the
exact and Taylor series methods again compare closely. The differences are
small compared '-j the COCOMO model error, with standard deviation of
approximately 15 to 20 percent of the point estimate of effort.

Table 4-2. Mean and Standard Deviation of Effort
for Triangular pdfs of Size

Size-Range Mean Effort Standard Deviation of Effort
Low/Mode/High Taylor Exact Taylor Exact

KDSI Series Method Series Method

16/16/64 181.9 181.8 76.0 77.1
16/24/64 199.4 199.4 71.7 72.4
16/32/64 217.5 217.5 69.2 69.4
16/40/64 235.91 235.94 68.b 68.6

The combined effects of skew and truncation of the Taylor series appear in
the first line of this table, where the standard deviations differ by 1.4
percent. The bottom row shows the effects of truncation only. The results
presented in tables 4-1 and 4-2 show that the Taylor series method enables

calculation of the mean and standard deviation (or variance) of effort to
an acceptable degree of accuracy for uniform or triangular pdfs.

16



4.2 CONDITIONS FOR CALCULATING THE CDF

It will now be demonstrated that the CDF of a multi-CSCI system can be
determined to a sufficient degree of accuracy by combining the Taylor
series method with the CLT. The CLT shows that the CDF of a sum of
independent random variables converges to the normal CDF as the number of
such variables increases, without regard to the forms of the contributing
pdfs. The approach which will be used to determine the conditions under
which the CLT may be used in the present context is to show that under
various worst-case conditions the following conjecture is true:

The CDF of effort may be calculated under the assumption that it
is normal whenever the largest contributing variance of size or
of the DEMs does not exceed half the total variance of the
effort.

As stated, the contributing variances are those of size and of the DEMs in
the various CSCIs; the error of the model is excluded. This condition is
viewed as sufficient but not necessary. The conjecture will be supported
by examples which satisfy the condition cited above. These examples are:

The variables come from two identical, independent, pdfs of size
which are either uniform or right-triangular. The DEMs are

assumed to be nominal, and the error of the COCOMO model is
neglected.

In these examples, the two contributing variances are equal, and the con-
dition for the conjecture is marginally satisfied. Neglecting the approxi-
mately normal error of the model is highly conservative.

The criterion for acceptance of the Taylor series model of CDF is
stated: this model will be considered acceptably accurate if its worst
error of estimated effort is less than 5 percent of the point estimate of
effort. In one particular area of interest, the range from 60 to 90
percentile, the Taylor series model is accurate within 2 percent or less,
an error which can be LonsldeLed negligible for cost-estimating purposes in
the planning phase.

17



4.2.1 A Sum from Two Uniform pdfs

Assume two identical uniform pdfs, fl and f2 , defined by

0, x < L.(-1
f, 1= /(Hi-L)L < < H (4-1)

0\ , H. < x
1

where i = 1, 2. Also assume these pdfs are identical so that L=1tL2 = L,

and H, = HZ = H, and R = H - L = H - L = H - L. The pdf of the sum (S)
of the variates is, see [31, the convolution integral

f(S) = f f1 (x) f2 (S-x) dx (4-2)

Using the definitions of f, and f2 and (4-3) yields the pdf of the

sum, S, as

0, S < L1 +L 2

S
2 2

fdx/R = [S-(LI+L2 )]/R , Li +L 2 S < L1 +L2 +RL1 +L2

f(S) : (4-3)
Hi +H 2 22

1dx/R = [HI+H2-SJ/R 2  L1+L2+R < S < H1+H 2

S

0, H1+H2 < S

This triangular pdf is symmetrical about the value S=L1 +L2+R = H+L.

Assume that this symmetrical triangular pdf of size has Low=16 KDSI,
Mode=40 KDSI, and High=64 KDSI, and use the COCOMO parameters a=2.8, and
b=l.2. The mean and standard deviation of effort for this case are
presented in table 4-2. These estimated values are now used to form the
CDF, using the assumption that the distribution is normal, consistent with
use of the CLT. This normal CDF is compared in table 4-3, below, with the
exact CDF for the symmetrical triangular pdf defined by (4-3), calculated
by the method of [4].

The difference of greatest magnitude (*) is 0.017, which corresponds
to an error of effort of 5 SM. This error of effort is negligibly small
compared to the selected criterion.

Uniform pdfs are symmetrical, and the pdf of the sum of two identical
uniform pdfs is a symmetrical triangle. It is not surprising that such a
sum has nearly normal distribution. Right-triangular pdfs are, however, at
the extreme of asymmetry. This case is now examined.
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Table 4-3. Normal CDF, True CDF, and Difference for a
Symmetrical Triangular pdf, 16K to 64K Size

Effort Normal True Difference
SM CDF CDF

70 0.008 0.000 0.008
78.001(Low) 0.011 0.000 0.011
100 0.024 0.012 0.012
125 0.054 0.051 0.003
150 0.106 0.117 - 0.011
175 0.188 0.205 - 0.017 *
200 0.301 0.316 - 0.015
235.908(Mean) 0.500 0.510 - 0.010
250 0.581 0.589 - 0.008
275 0.715 0.710 0.005
300 0.824 0.809 0.015
325 0.902 0.886 0.016
350 0.951 0.943 0.008
375 0.978 0.980 - 0.002
400 0.991 0.998 - 0.007
411.6935(High) 0.995 1.000 - 0.005
425 0.997 1.000 - 0.003

4.2.2 A Sum from Two Right-Triangular pdfs

Asssume two identical right-triangular pdfs, defined without loss of
generality on the interval 0 < x < 1, as shown in figure 4-1 below.

f
2

f=2(1-x)

0 1 x

Figure 4-1. A Right-Triangular Probability
Density Function
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The pdf of the sum of the two variates is

0, S < 0

S
f(S) 4f(l-x)(l-S+x)dx=2S(6-6S+S 2 )/3, 0 < S < 1

0

(4-4)
1

4J(l-x)(1-S+x)dx= 2(8-12S+6S 2 -S3)/3, 1 < S < 2
S-I

0, 2 < S

As before, integration of (4-4) yields the CDF of the sum as

0, 0 < S

S2(S2-8S+12)/6, 0 < S < 1

F(S) (32S-24S 2+8S3-$4 -10)/6, 1 < S < 2 (4-5)

1, 2 < S

Following the procedure of [41, (4-5) may be transformed to the
required form by the substitutions

1/bS=[t-(L 1+L2 )]/R, R=H-L, and (D/) =t (4-6)

where, using the notation of section 2, a = a( E I n M. )/I (4-7)i I j 1.

The CDF of the sum is c-Iculated as follows:

a. Calculate a from (4-7) and then select a value for D;
b. Using (4-6), calculate t and then S;
c. Given S, calculate the CDF from (4-5).

The cumulative probability distribution thus generated is compared to
the normal CDF in table 4-4. The mean and variance used for calculating
the normal CDF are calculated here.

The size data for the assumed right-triangular pdfs are:

Low=L,=L 2=16 KDSI, High=H1 =H 2=64 KDSI.
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Mean sizes of the pdfs are, from (4-4):

I=I2=(16+16+64)/3=32 KDSI.

Size standard deviations are, from (4-6):

ai =a12= ([(162+162+642 )-(16*16+16*64+16*64)]/18)1/2 = 8/2.

The DEMs have been assumed nominal and without uncertainty so that
their products are unity and their variances are zero; then the point
estimate D0=F4 as a consequence. The point estimate of effort is

Do=2.8(32+32)1.2=411.693 SM

The first and second derivatives with respect to size are, from
(2-11)

aD aD
- - {[(1.2-1)411.693+411.693]/64)=7.719 SM/KDSI

aiIal 2i
and, from (2-12)

S2D 2D (1.2-1)[(1.2-2)411.693+2*411.693]
-= = 0.024

31 a2 2 (64*64)

The estimated mean effort is, from (2-14)

D = 411.69+0.0241(8/2)2+(8/2)21/2=411.69+3.07=414.8

The exact mean effort is 421.0 SM, from [41.

The estimated standard deviation of effort is, from (2-15),

U = [(1.2-1)411.69+411.691 [(8v2)2+(8/2)211/2 = 123.5

64

The exact standard deviation is 125.1, from [4].

The estimated mean and standard deviation of effort are used to
calculate the Taylor series model's CDF, which is normal under the CLT
hypothesis; this CDF is presented in table 4-4, below. The exact CDF is
also presented, together with the error of probability between the two CDFs
at the same effort.
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Table 4-4. Exact and Normal Cumulative Probability
Distributions of Effort for the Sum of
Variates from Two Right-Triangular pdfs

No. of
Std. Devs. Effort Normal CDF Exact CDF Difference

- 1.98 170 0.0237 0 0.0237
- 1.91 179.2 0.0282 0.0000 0.0282
- 1.74 200 0.0410 0.0078 0.0332
- 1.54 225 0.0622 0.0352 0.0270
- 1.33 250 0.0911 0.0783 0.0128
- 1.13 275 0.1289 0.1334 -0.0045
- 0.93 300 0.1764 0.1975 -0.0211
- 0.73 325 0.2336 0.2676 -0.0240
- 0.52 350 0.2999 0.3415 -0.0416
- 0.32 375 0.3737 0.4170 -0.0433 *
- 0.12 400 0.4524 0.4922 -0.0398

0.083 425 0.5330 0.5653 -0.0323
0.29 450 0.6122 0.6350 -0.0228
0.49 475 0.6871 0.6997 -0.0126
0.69 500 0.7549 0.7582 0.0033
0.89 525 0.8139 0.8096 0.0043
1.09 550 0.8632 0.8528 0.0104
1.30 575 0.9027 0.8881 0.0146
1.50 600 0.9331 0.9163 0.0168
1.70 625 0.9556 0.9388 0.0168
1.90 650 0.9716 0.9562 0.0154

The difference is relatively small everywhere except in the region
from 0.52 to 0.12 standard deviations below the mean effort; the difference
of greatest magnitude is marked by a *. This region is of relatively
little interest, for the principal concern of a project manager is usually
in the over-run range of cumulative probabilities from 70 to 90 percent.

The differences, in column 5 of table 4-4, are the errors of the
cumulative probability distribution function as a function of effort.
These errors may be converted to errors of the estimate of effort as a
function of the cumulative probability; this structure of errors is
presented in table 4-5, below.
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Table 4-5. Errors of Estimated Effort

Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Error of Effort +6 -10 -15 -13 -11 -8 -4 -2 +9

The maximum error of effort, in table 4-5, is -15 SM; this error is
less than five percent of the point estimate (411 SM), and is also less
than 1/3 of the approximately 62 SM error of the COCOMO model. Further,
the errors in the region of interest from 50 to 90 percent probability are
even smaller. Therefore, even in this extreme case the error of the Taylor
series model is acceptably small compared to the selected criterion.

The accuracy of this method improves as the number of error sources
increases.

4.3 INFERENCES

It has been shown that the sum of variables from either two uniform,
or two right-triangular, identical pdfs yields a CDF which is sufficiently
close to normal to be accepted as such, under the selection criterion
proposed above. It will now be shown that the CLT may be used to extend
the examples to the more general situation of more than two contributing
variances.

Assume that the variance of the system is comprised of two large and
equal variances, plus one or more smaller contributors. The effect of
these smaller contributors is to make the pdf and CDF of the overall system
closer to normal, by virtue of the action of the CLT. Alternately, assume
that instead of one or more small contributors there is only the error of
the COCOMO model itself. But this error is, on inspection, nearly normal,
taking into account that there are only 63 cases in the COCOMO database,
and therefore the CDF of the sum of the two large contributors and the
error of the model is more nearly normally distributed than merely the sum
of the two principal contributors.

The sum of variables from two general triangles with the same
size-range cannot be further from normal than the sum from two identical
right-triangular pdfs. Therefore, the example considered above is a worst
case; any other combination of triangles must be more nearly normal.
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It is therefore concluded that the conjecture proposed at the
beginning of this section is demonstrated. The conclusions are:

a. The Taylor series method may legitimately be used in all cases
to determine the mean and standard deviation of effort;

b. The Taylor series/CLT method may be used to find the cumulative
distribution of effort whenever the largest contributing
variance due to size or to a DEM does not exceed half of the total
variance of effort.

It should be observed that the criterion stated above is not valid in
general. However, it is at present valid in software effort analysis
because the error of software effort estimating models is large. If a
software effort estimating model should appear with much smaller errors,
then this method of effort uncertainty analysis, and the validity criterion
which was offered, must be reconsidered.

P. R. Garvey asserts that his method [4] for calculating the effects
of uncertainties of size can be extended from the single-CSCI case, for
which it is exact, to the multiple-CSCI case by use of the CLT. The
analysis, above, in this section, implies that validity of his assertion
requires satisfying the same criteria used here for Taylor series. His
assertion is therefore justified, and his approach may be used for the size
aspects of a multiple-CSCI case.

4.4 SUGGESTIONS FOR THE SOFTWARE ANALYST

Some suggestions for the software cost analyst are offered.

Size: The uncertainty of size of a software project is primarily at
the CSCI level, and is related to the number, rather than the
size, of modules at the lowest level of the hierarchy of com-
ponents. Triangular or uniform pdfs are reasonable ways to
describe size uncertainty.

DEMs: At least some DEMs may reasonably be assumed to have uncer-
tainties. The structure of the algorithms which have been
developed enables setting the uncertainty of a DEM directly as,
for example, "standard deviation for DEM 36 = 3 percent, i.e.,
0.03." This follows from the definition of DEMs as multipliers
with nominal value of unity; see also the further discussion of
this point in section 5. The analyst may therefore express an
opinion of the uncertainty of selection of the DEM as a frac-
tion of the DEM's value, or may use the discrete pdf approach
outlined in section 4.3; the latter is recommended.
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SECTION 5

EXAMPLE

An example of the computation procedure is presented in this section.
A system comprised of three CSCIs is assumed. The sizes of the CSCIs, and
the values of three DEMs in each CSCI, are assumed to be uncertain. The
mean effort and the standard deviation of effort will be evaluated, and the
normal probability cumulative distribution function which results will be
determined.

The procedure is conducted by using work sheets which are specifically
designed for Intermediate COCOMO.

The computation work sheets are of two distinct types. The first type
is used to compute the mean values of the DEMs, their standard deviations,
and the other related quantities. One of these forms is filled out for
each CSCI. The second form is used to calculate the mean and standard
deviation of effort, including the effects of size and of DEMs; this form
is filled out once for the project.

5.1 DATA

The data for the example are gathered here. Table 5-1 presents the
assumed uncertainties of size for the three CSCIs.

Table 5-1. Assumed Size Uncertainties

CSCI # Type of Distribution Low-Size Mode-Size High-Size
L M H

1 Triangular 16 32 64
2 Right-Triangular 40 40 80
3 Uniform 40 - 80

No value is entered in table 5-1 for the mode for CSCI 3 as its pdf is
assumed to be uniform. The data from table 5-1 will be used in figure 5-6.
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Table 5-2 presents the assumed uncertainties for three DEMs in each of
the three CSCIs. DEMs not entered in table 5-2 are assumed to be nominal,
with value unity and no uncertainty. Consistent with the prior discus-
sions, the DEMs' uncertainties are described by discrete distributions.

Table 5-2. Assumed Uncertainties of DEMs

CSCI DEM Probabilities
# Name Very Low Low Nom High Very High Extra High

1 CPLX 0.05 0.10 0.25 0.35 0.20 0.05
TIME 0.50 0.50
ACAP 0.10 0.30 0.50 0.10

2 DATA 0.70 0.30
STOR 0.60 0.40
PCAP 0.50 0.50

3 RELY 0.50 0.50
AEXP 0.25 0.50 0.25
LEXP 0.20 0.70 0.10

These data will be used in figures 5-2 through 5-4.

5.2 REORGANIZATION OF MEAN AND VARIANCE FORMULATIONS

It is useful, for computational purposes, to reorganize the equations
for mean effort and its standard deviation. The modified forms are
presented here; it will be observed that the changes are:

Size: The first partial derivative with respect to size is premul-
tiplied by mean size, and the standard deviation of size is
divided by the mean size; with the second partials, the square
of size is used.

DEM: The partial derivative with respect to a DEM is multiplied by
that DEM's mean value, and the standard deviation of the DEM is
divided thereby.
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These changes are thus only of form. The equations for mean effort and

variance of effort become

Mean effort:

=D O + E (1/2){(b-1)[(b-2)D0 + 2FRi 1}2 ( I/I)
2  (5-1)

Variance of effort:

a 2 D = ((b-l)Do+NMiJ 2( aI/I) 2 + rE Z D' 2 ( ,mij/Ri 2 (5-2)

The inner summation of the second term of (5-2) may be simplified as

- 2 - 2
(oM./M) = a (i /N.j) (5-3)

The notation is simplified by defining

Si = (b-1)DO+NM1  (5-4)

Ti = (b-1)[(b-2)D0 + 2NM.j (5-5)

The equations for calculating the mean and variances of uniform,
triangular, and discrete pdfs are gathered here for convenience.

Means

Uniform pdf x = (L + H)/2 (5-6)

Triangular pdf x = (L + M + H)/3 (5-7)

Discrete pdf x = xkPk (5-8)

Variances

Uniform pdf 2 = (H - L)2 /12 (5-9)

2 2 2 2Triangular pdf a = t(L +M2 +H )-(LM+LH+MH)]/18 (5-10)

Discrete pdf a2 = E(Xk-xk) 2 Pk (5-11)

where x k are the values of the ratings of a DEM, and Pk are the proba-
bilities of these ratings.
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5.3 MEAN AND STANDARD DEVIATION OF DEMs

Computation of the mean, standard deviation, and CDF of effort
requires computation of the means and standard deviations of the DEMs.
Figures 5-1 through 5-4 present the computation of the mean and standard

deviation of effort due to the uncertainty of the DEMs. Figure 5-1 is a
detailed list of instructions, while figures 5-2, 5-3, and 5-4 present the
actual calculations and data for the DEMs of the three CSCIs, consistent
with the data in table 5-2 and the second term in (5-2), or the
reformulation in (5-3).

The output from this stage of the computation appears at the bottom of
columns 13, 14, and 15 on figures 5-2 through 5-4. These outputs will be
Used in computing the standard deviation of effort in figures 5-5 and 5-6,
which will be discussed next.

5.4 MEAN AND STANDARD DEVIATION OF EFFORT

Computation of the mean and standard deviation of effort, and its CDF,
requires computation of the means and standard deviations of size of the
CSCIs. Figure 5-5 is the detailed instruction set for using figure 5-6.
Figure 5-6 is used for calculating the point estimate of effort, the
estimated mean effort, and the standard deviation of effort. The size data
from table 5-1 are entered into columns 1, 2, and 3. The result of the
computations on the DEMs, from figures 5-2, 5-3, and 5-4, are entered into
column 6. Figure 5-5 presents the procedure for using this form. Any
standard table of the normal probability function may be used to find the
CDF; alternately, see a procedure in [51.

5.5 CUMULATIVE DISTRIBUTION FUNCTION OF EFFORT

Given the mean effort, its standard deviation, and the assumption that
the distribution is normal, the CDF is easily calculated by using a stan-
dard table of the normal probability function. This table is entered with
x, the number of standard deviations between any value of effort, D', and
the mean effort, and is defined as

x = (D' - )/D (5-12)

Table 5-3 presents the probability cumulative distribution function,
CDF, which follows from the results of the computations in figure 5-6; that
figure shows the mean effort to be 1412 SM, and the standard deviation of
effort to be 322.9 SM.
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Table 5-3. Cumulative Probability vs. Effort

Cumulative
Standard Effort, Probability,

Deviations, x SM Percent

-1.28 1000 10.1
-1.12 1050 13.1
-0.97 1100 16.7
-0.81 1150 20.9
-0.66 1200 25.6
-0.50 1250 30.8
-0.35 1300 36.4
-0.19 1350 42.4
-0.04 1400 48.5
0.00 1412 50.0
0.27 1450 54.7
0.27 1500 60.7
0.43 1550 66.5
0.58 1600 72.0
0.74 1650 77.0
0.89 1700 81.4
1.05 1750 85.2
1.20 1800 88.5
1.36 1850 91.3
1.51 1900 93.5
1.67 1950 95.2
1.82 2000 96.6

Thus, for example, the probability that the project will require not more
than 1700 SM is 81.4 percent while, by interpolation, it is 70 percent
probable that the effort will not exceed 1580 SM.

Alternately, normal probability graph paper may be used. On this type
of paper a normal CDF is a straight line. Enter the following pairs on the
paper: ((D-aD), 15.9%), (D, 50%), and ((D+a ), 84.1%); the three points
will lie on a straight line from which table 5-3 may be formed directly;
see figure 5-7. As a further alternate, an excellent algorithm for the
normal CDF is given in [5].
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APPENDIX A

This appendix gathers the various computation forms which were used in
section 5, together with the various instruction sheets. This appendix
therefore contains all the material necessary to perform a complete
software effort uncertainty analysis, or to form spreadsheets for the
computation.

41



0 0 -

EE

0)0

0 .... '
0 0

~D- g .~ u
0o r- R8

00 0 L4-r
0j0 >

0 0 0

.C-w 0 w
0 E - 5;-

CC.) E . 0

(Aui

0' U) 9., t

0 0~ -C

z 0
r 75 0

0a 0 (AC

(a0 - 0-o
E 0 m-t~o -M

00 -u C & .
0 

- -
0 - % -.

C0 .s 0 -

9 v 
bO

-0~ 0*~ 0 t
CU -+ 0

V .0 0 c+ -0 c c

0 0C 0 - + 0 0l

cc C L 0
w = a- - "4 0-0w

13 tot o -

~*~- ~ + - 0

C 0 0 .F0c
Ego 00 0 C

0 0

C, C6 .0 in -

E- - S +m. m 0 E
'5 0 + (' 0~
2 CC 0 -

"0 0 0 00-

00 8. 0~) "6CCY

0 a) 0 0

'-0

15Ec U

0 c 42



w0

00

00

ca .- 0f

C

rU clc Nc 1

44
cu -

r- xl

.. 6

CL-

0
0 40

(0a 0
--- -- - -

43-



0 E 0i
0- -

0
cc -- 44

m L E. -o

cc 0 r- LE c

0 to -N' CD 0

0 CE c

0 ~ - r~Il(

E o SD en 08. 0. cc M

S ~ E 0 t

.. s 8D 0 o M t
.0 0 c m 0 0 -. u 0 2 (

0 u0

In =O 0 0

OE ( - 0 0 0
o 70 Cq 0 8E.C 

cc U . ~ ~ i
CL U) 4-400

.- C 0 :3 = ,R. >. n -0 * i
(U (U 0 0E () V,( CD

00 0 LC

a 0cc s § = 0~ m(U 8
0 >~ co0 0~ -280 3C

1- W O 0 01- 0u 0

. N ( ~ ~ Il (0 cc >

0 C&.

0 E 44



- 0 0 0D

E ,0 8 E

0 0'- > (
C - -

0 0 0.- E CD~ 0
MO ~. .0 0 =

0 89) c "am

.S. 00 Nr

C0 0 cc Ei
Q5 z m : - 8 - r(

E0 Cm Z v.- o.
.2 cc- 0. -0 - 0 CD.)m

>, 0.. 0 c
C, 0 0 0

~a * 0C E

Ui 0.C >

00 LU 0 0c
0 0c -

6's 80. E V

5- E c c .- 0o0~ ~ og

8.8 'a0 08 SC

-0 Et -0 E .B
03 -' 0 C

r--*

00 0 E 0 0

* 01
E -0-0 00 02 r8o 3 -

0 - 0 C- In LD

-E - -

CL 5r 0 = 5



to H o0

- r-

0

+-C4 0

* ---

Ill CCJj If 11$

C 0

cl

C cw

co

* 0 0 . Nr

00)0 0-

c 0
mN

00

C.0.

0 --

Ll 0

LIL

q '-40



*4 4
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